SickKids

Introduction

- Access to surgical care in low- to middle-income countries (LMI limited, accounting for 1.5 million annual deaths.
- Augmented Reality (AR) enhances the physical, real-world environm
- Innovative AR technology could address timely and quality surgical barriers in LMICs.

Obiective

 To describe the current reported clinical evidence on the application AR for surgical care in LMIC.

Methods

- 1. We queried the biomedical electronic database OVID MEDL EMBASE, Web of Science, and Scopus on May 2022 and July 20 following the PRISMA 2020 Abstract guidelines.
- 2. Common MEDLINE MeSH terms used were 'Augmented Rea 'Smart Glasses', 'Telesurgery', and 'underserved countries'
- 3. Inclusion Criteria: AR utilization for surgical care in LMIC
- 4. Exclusion Criteria: Virtual Reality, Mixed Reality, those not invol LMIC, and not performed in a live surgical setting
- 5. Cross-reference with relevant scoping and systematic reviews
- 6. Quality assessment on included literature

Results

- 748 studies were retrieved on the initial search, and 8 literature from 2014-2021 were included
- **AR was successfully applied** in various telesurgical specialties in many LMICs in Eurasia (n=3), Africa (n=3), and South America (n=3).
- AR **limitation** involves **connectivity issues**, which can be resolved.
- Mentors can provide live, direct feedback and annotation to mentees.
- AR technologies were **cheap**, allowing for better continuity of care.
- All studies suggest AR technology is feasible for telementoring surgical care in LMIC, **potentially reducing surgical care inequalities**.

Conclusion

- AR technologies were **successful** in mediating telesurgery and showed **promising potential** to mitigate surgical discrepancies in LMIC.
- Limitations include low population size and lack of full text in some studies.
- **Future studies** could assess the implementation of other technologies like virtual reality (VR) and mixed reality (MR).

Augmented Reality Platforms for Surgical Intervention in Low- to Middle-Income Countries: A Scoping Review Mikael L. G¹, Kai Iwano¹, Lai-Nam Tse BSc¹, Elena Springall MLIS³, Michael E. Chua MD MASc DRCPSC^{1 2}

¹Division of Urology, Hospital for Sick Children, Canada, Global Surgery, ²Department of Surgery, University of Toronto, Canada, ³Libraries, University of Toronto, Canada

	Author & Year	Study Design	Country	Surgical Specialty	Pop. Size	AR Platform	Main Outcome & Conclusion
IC) is nent. I care	Datta N, et al. 2015	Prospective observational	Mentee: Paraguay, Brazil Mentor: Germany, US	General surgery – Lichtenstein Hernioplasty	(n) 8	Google Glass	AR was successful in proctoring hernioplasty (n=8) with minor connection interruption (n=3).
	Wai B, et al. 2014	Qualitative report	Mentee: Iraq Mentor: Iraq	Ophthalmology	30		AR was successful for telesurgical training (n=30). They were portable and practical .
on of	McCullough M, et al. 2018	Descriptive Case Study	Mentee: Mozambique Mentor: US	Plastic Reconstructive Surgery	12		AR was successfully livestreamed with minor image distortion (n=12). All surgeons find AR helpful.
	Kunitsky K, et al. 2021	Qualitative feasibility report	Mentee: Benin Mentor: UK, US	Urology – Endoscopic and Open surgery	2	Proximine	AR was successfully used to teleproctor the entire procedure with live direct feedback (n=2)
LINE, 2022,	Greenfield M, et al. 2018	Case Report	Mentee: Palestine Mentor: Lebanon	Plastic Reconstructive Surgery – Complex Hand Reconstruction	1	AR System	AR allows mentor to 'show' the mentee rather than 'tell' them how to carry out the procedure. It was also cost-effective.
ality',	Stetson W, et al. 2021	Qualitative feasibility report	Mentee: Romania Mentor: US	Orthopedic Surgery – Arthroscopic Shoulder Surgery	12	SurgTime	AR was successful in teleproctoring most cases (n=10). There was a connectivity issue (n=2) that was able to be resolved
olving	Davis M, et al. 2016	Prospective Observational	Mentee: Vietnam Mentor: US	Neurosurgery – Endoscopic Third Ventriculostomy and Choroid Plexus Coagulation	15	VIPAR	AR was rated very useful by all mentors and mentees. Despite mild connectivity issue (n=1), it is effective, practical, and cost- effective
	Zhang L, et al. 2021	Descriptive qualitative	Mentee: Uganda Mentor: US	Pediatric Gastroenterology – endoscopy	42	AR Headset	AR was successful for all endoscopies (n=42) and they are cost-effective .

Figure 1. Types of AR platforms used in the literatures for surgical telementoring in LMIC

Table 1. Analysis of included studies discussing AR application for surgical care in low- to middle-income countries

Figure 2. (A) Head-mounted Google Glasses on the operating surgeon. (B) Annotation by remote mentor on mentee's surgical view, obtained from McCullough M., et al.

UNIVERSITY OF TORONTO

Figure 3. (A) Proximine AR system to guide local surgeons in Gaza. (B) Remote surgeons in Beirut using a webcam to proctor their hand into a virtual surgical field, obtained from Greenfield M., et al.